
Genetic Improvement for Software Product Lines:
An Overview and a Roadmap

Roberto E. Lopez-Herrejon1, Lukas Linsbauer1, Wesley K. G. Assunção2,3,
Stefan Fischer1, Silvia R. Vergilio2, Alexander Egyed1

1ISSE - Johannes Kepler University Linz, 4040 Linz, Austria
2DINF - Federal University of Paraná, CP: 19081, 81531-980, Curitiba, Brazil

3COINF - Technological Federal University of Paraná, 85902-490, Toledo, Brazil
{roberto.lopez, lukas.linsbauer,stefan.fischer, alexander.egyed}@jku.at,

{wesleyk, silvia}@inf.ufpr.br

ABSTRACT
Software Product Lines (SPLs) are families of related soft-
ware systems that provide different combinations of fea-
tures. Extensive research and application attest to the sig-
nificant economical and technological benefits of employing
SPL practices. However, there are still several challenges
that remain open. Salient among them is reverse engineer-
ing SPLs from existing variants of software systems and their
subsequent evolution. In this paper, we aim at sketching
connections between research on these open SPL challenges
and ongoing work on Genetic Improvement. Our hope is
that by drawing such connections we can spark the interest
of both research communities on the exciting synergies at
the intersection of these subject areas.

CCS Concepts
•Software and its engineering → Software product
lines; Search-based software engineering; •Computing
methodologies → Search methodologies;

Keywords
evolutionary algorithms, genetic programming, genetic im-
provement, software product lines, variability

1. INTRODUCTION
Software Product Lines (SPLs) are families of related soft-

ware systems [5], where each product has a different combi-
nation of features – increments in program functionality [48].
Over the last two decades, extensive research and applica-
tion of SPL practices have shown their technological and
economical advantages (e.g. [46]). However, for an effective
adoption of SPLs many challenges still need to be addressed.
Salient among them are the reverse engineering of SPLs from
existing software system variants, the most prevalent sce-
nario in industry [10], and the evolution of SPLs [3, 7, 23].
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Genetic Improvement (GI) is the process of automati-
cally improving a system’s behavior using genetic program-
ming [24]. In contrast with typical work on genetic program-
ming that evolves programs from scratch [41], GI starts from
existing systems which are evolved so that they are better
with respect to given criteria. GI is an expanding research
area that has already been successfully used, for instance,
to specialize boolean satisfiability (SAT) programs written
in C++ for concrete tasks such as combinatorial interaction
testing [40], to repair broken functionality [15], or to add
new functionality [18]. In recent publications, Harman and
colleagues advocate the potential use of GI for SPL devel-
opment [17, 24]. For instance, to generate a Pareto surface
of programs that exhibit the same functionality but with
different quality attributes such as performance. Another
possibility they propose is actually growing new functional-
ity, i.e. creating a new branch or product variant of a SPL.

Our recent systematic mapping study showed the increas-
ing interest in research at the the intersection of SPLs and
Search Based Software Engineering (SBSE) [34]. The driv-
ing motivation of this paper is to sketch in further detail
the connections between SPLs (reverse engineering and their
evolution) and ongoing work on GI. We believe that by draw-
ing these connections we could bring the attention to the
similar challenges faced by both research communities, and
draft a rough roadmap of open issues that could be addressed
in the short to medium term. We hope this paper can help
to spark the interest on the exciting synergies at the inter-
section of these areas.

The paper is organized as follows. Section 2 provides the
basic background to understand the SPL challenges that our
paper focuses on. Section 3 draws the connections between
ongoing work on SPLs and the work of GI as characterized
by the Genetic Improvement of Software for Multiple Ob-
jective Exploration (GISMOE) project [19, 24]. Section 4
presents our roadmap of issues that could be addressed as
some of the first steps in exploring the synergies between
SPLs and GI.

2. SPL BACKGROUND
Some of our recent work has focused on several novel ap-

proaches for reverse engineering SPLs and their subsequent
evolution [1, 2, 12, 13, 27, 28, 33, 35]. In this section, we illus-
trate the two main challenges that our work addresses.
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Figure 1: Reverse Engineering Software Product Lines Overview

2.1 Reverse Engineering SPLs
The most common scenario for reverse engineering SPLs

in practice is depicted on the left part of Figure 1. In this
scenario, there exist several related software products (i.e.
they offer some similar functionality) that were created par-
tially independently (e.g. they may have shared some arti-
facts at some point in their history) typically with ad hoc
techniques; for instance, by forking the new products from
other already existing software systems and then manually
adapting them to fit the new requirements. Such products
follow their own, mostly independent, development life cy-
cle. Ad hoc practices like these are collectively called Clone
and Own (C&O) [10], and support available for them is very
limited.

Not surprisingly, even when dealing with a small number
of products, C&O approaches lead to multiple maintenance
problems like inefficient feature update or bug fixing (i.e. a
bug needs to be fixed separately for each product), duplicate
functionality, redundant and inadequate testing, etc [10]. In
other words, C&O approaches may work fine up to a certain
number of distinct products depending on product domains,
the development organization and its software engineering
practices. However, after such number, simply adding new
independently-developed systems is no longer feasible either
because of managerial, economical or technical reasons.

It is then that SPL approaches are the premier alternative
for effectively coping with the complexity of the variability
– the capacity of software artifacts to vary— in the existing
products. The transition to a SPL approach is not a minor
undertaking because it requires a significant investment of
resources to identify, extract, and reify what is common (i.e.
commonality) and what varies (i.e. variability) across all
the artifacts involved as depicted on the right part of Fig-
ure 1. The artifacts with their variability and commonality
identified constitute the building blocks used by variability
management mechanisms to generate the existing products
but should in addition be capable of providing robust sup-
port for maintenance and evolution tasks. There are many
variability management mechanisms, all of them with ad-
vantages and disadvantages (see e.g. [14]). What is common
among variability management mechanisms is that they rely
on a variability model to express the valid combinations of

features desired for the products of a SPL. The most popu-
lar form of variability models is feature models depicted at
the top of Figure 1. For further details please refer to [21].
Our previous work has explored the use of SBSE techniques
for reverse engineering feature models [2, 28,33,35].

In this paper, the focus is on reverse engineering the vari-
ability and commonality of the artifacts that are fed into the
variability management mechanisms. We use as a running
example simple software products that draw different geo-
metric shapes on a screen canvas. Even though our example
uses Java code for illustration, the challenges that will be
highlighted can be easily mapped to other types of artifacts.

In SPLs, each software product is distinguished by the set
of features it provides. Let us consider an example of a prod-
uct P1 which provides a single feature LINE. This product
consists of two classes whose code snippets are shown in Fig-
ure 3. Class Line contains fields for the start and end points
of lines (Line 3), a constructor (Line 4), a method paint that
paints the lines (Lines 5-8) and an auxiliary method setEnd

that sets the end point (Line 9). Class Canvas contains field
lines that holds a list of the lines drawn (Line 12), and
method paintComponent (Lines 13-18) which is called every
time the canvas is repainted and that in turn draws the lines
on the canvas by calling their method paint (Line 16).

Now consider a second product P2 whose code is also
sketched on Figure 3. In addition to feature LINE, this
product also implements feature WIPE that wipes the canvas
clean. This new feature causes changes in the code because
it adds a new method wipe (Lines 38-41) shown underlined
in the figure. When this method is called, the list that holds
the Line objects is cleared (Line 39), so that when the call
to repaint (Line 40) is made, the triggered call of paint-

Component (Line 32) finds no lines to draw in Line 35.
Let us consider a third product P3 that implements fea-

ture RECT which draws rectangles on the canvas. The code
snippets are also shown on Figure 3. Similarly to variant
P1, it defines a new class, Rect (Lines 44-52), to implement
the new shape type. This class contains the fields to draw
the rectangle, upper left corner coordinates plus width and
height (Line 45), a paint method (Lines 47-50), and a se-

tEnd method (Line 51). This variant also contains its Can-

vas class (Lines 53-61), which now has a list of rectangles
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(Line 54) and its method paintComponent (Lines 55-60) that
paints the rectangles (Line 58).

Based on these three products of our running example, the
goal is to reverse engineer a SPL that we will refer to as the
Draw Product Line (DPL). As mentioned before, there are
many variability management mechanisms that have been
used to implement SPLs. The simplest ones are based on an-
notations made to the artifacts that are pre-processed based
on the different selection of features for each product that
needs to be created. Figure 2 shows an example of how the
class Canvas could be annotated. In this simple example, a
product that contains feature LINE will include in the final
code of class Canvas the pieces of code of Line 3 and Line 12.
Similarly for products that provide feature RECT which will
include Line 6 and Line 15. In practice, the conditions that
guard the inclusion of the fragments of these artifacts can
be more elaborate to reflect the complex interactions that
features can have. This will be elaborated on in Section 3.1.

The main challenge for reverse engineering SPLs is thus
to automate as much as possible the transition from the ar-
tifacts of individual products to the corresponding artifacts
that, together with a chosen variability management mach-
anism, correctly and completely capture all possible and
valid combinations of features. This challenge becomes more
daunting when hundreds of products, hundreds (if not thou-
sands) of features, and multiple artifacts other than source
code are considered.

1 class Canvas {
2 #ifdef $LINE
3 List <Line > lines = new LinkedList <Line >();
4 #end
5 #ifdef $RECT
6 List <Rect > rects = new LinkedList <Rect >();
7 #end
8
9 void paintComponent(Graphics g) {
10 ...
11 #ifdef $LINE
12 for (Line l : lines) { l.paint(g); }
13 #end
14 #ifdef $RECT
15 for (Rect r : rects) { r.paint(g); }
16 #end
17 ...
18 }
19 }

Figure 2: Example DPL using preprocessor annota-
tions

2.2 Evolution of SPLs
Broadly speaking we define SPL evolution as the progres-

sion of the changes made to a SPL towards a better adap-
tation to the environment where it is intended to be used.
There are multiple evolution scenarios for SPLs [26]. For
illustration purposes here we focus on a single one, the cre-
ation of a new product based on the combinations of existing
features. More concretely, let us now consider the case of
developing a new product P4 that provides both rectangles
(RECT) and wiping capabilities (WIPE), both features already
available in the SPL from two previous products P2 and P3.
The challenge now becomes how to build the new product
based on the knowledge already available, as captured, for
instance, in the pre-processor implementation of Figure 2.

1 /* Product 1 (LINE) */
2 class Line {
3 Point startPoint , endPoint;
4 Line(Point start) {...}
5 void paint(Graphics g) {
6 g.setColor(Color.BLACK);
7 g.drawLine(startPoint.x, startPoint.y,

endPoint.x, endPoint.y);
8 }
9 void setEnd(Point end) {...}
10 }
11 class Canvas {
12 List <Line > lines = new LinkedList <Line >();
13 void paintComponent(Graphics g) {
14 ...
15 // Paints the figures
16 for (Line l : lines) { l.paint(g); }
17 ...
18 }
19 }

20 /* Product 2 (LINE , WIPE) */
21 class Line {
22 Point startPoint , endPoint;
23 Line(Point start) {...}
24 void paint(Graphics g) {
25 g.setColor(Color.BLACK);
26 g.drawLine(startPoint.x, startPoint.y,

endPoint.x, endPoint.y);
27 }
28 void setEnd(Point end) {...}
29 }
30 class Canvas {
31 List <Line > lines = new LinkedList <Line >();
32 void paintComponent(Graphics g) {
33 ...
34 // Paints the figures
35 for (Line l : lines) { l.paint(g); }
36 ...
37 }
38 void wipe() {

39 lines.clear();

40 repaint();

41 }
42 }

43 /* Product 3 (RECT) */
44 class Rect {
45 int x, y, width , height;
46 Rect(int x, int y) {...}
47 void paint(Graphics g) {
48 g.setColor(Color.BLACK);
49 g.drawRect(x, y, width , height);
50 }
51 void setEnd(int newX , int newY) {...}
52 }
53 class Canvas {
54 List <Rect > rects = new LinkedList <Rect >();
55 void paintComponent(Graphics g) {
56 ...
57 // Paints the figures
58 for (Rect r : rects) { r.paint(g); }
59 ...
60 }
61 }

Figure 3: Example products P1, P2, P3
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1 /* Product 4 (RECT , WIPE) */
2 class Rectangle {
3 int x, y, width , height;
4 Rectangle(int x, int y) {...}
5 void paint(Graphics g) {
6 g.setColor(Color.BLACK);
7 g.drawRect(x, y, width , height);
8 }
9 void setEnd(int newX , int newY) {...}
10 }
11 class Canvas {
12 List <Rectangle > rectangles = new LinkedList <

Rectangle >();
13 void paintComponent(Graphics g) {
14 ...
15 // Paints the figures
16 for (Rectangle r : rectangles) {
17 r.paint(g);
18 }
19 ...
20 }
21 void wipe() {

22 lines.clear(); //faulty feature interaction

23 repaint();

24 }
25 }

Figure 4: Example of naive implementation of prod-
uct P4 (RECT,WIPE).

As a starting point, artifacts from variant P3 can be reused
because it already provides the feature that draws rectangles
RECT. In addition, based on the implementation of products
P1 and P2, it could be inferred that feature WIPE is imple-
mented by the code in Lines 38 to 41 of variant P2, shown un-
derlined in Figure 3, because it is the only part that changes
between products P1 and P2.

A naive approach would be to compose features RECT and
WIPE as shown in Figure 4. Notice that in this figure, in
Line 22 the statement lines.clear(); makes a reference to
field lines which is not defined in class Canvas of product
P4, hence causing an error. This error highlights the pres-
ence of a feature interaction – code that exists whenever
two or more features appear together in a product [22] –
between WIPE and LINE, and the presence of code that does
not change (e.g. Lines 21, 23, 24) regardless of what other
features are present in a product – code which is needed for
a valid feature implementation (e.g. WIPE).

The challenge for this evolution scenario is to automat-
ically detect errors like this one, repair them, and update
the SPL accordingly, for instance, by modifying the guard
conditions of the pre-processor code for the corresponding
artifacts. In this example, a simple repair would be substi-
tuting Line 22 with rectangles.clear().

3. SPLS MEET GISMOE
In this section we start drawing the connections, albeit

with broad strokes, between recent and ongoing research on
reverse engineering SPLs and their evolution with the Ge-
netic Improvement of Software for Multiple Objective Ex-
ploration (GISMOE) approach [19, 20, 24]. What drove our
interest into the subject was the following quote presented
at a keynote talk at ASE 2012 [19]:

”The GISMOE approach may also offer solutions to some
of the issues raised by SPLs. For example, using GISMOE,
we can create new branches automatically: the GP engine

will evolve the new versions of the product family from
existing members of the family. We may also be able to
merge versions when the product family becomes large or

unwieldy.”

Inspired by this quote, in the next subsections we make an
attempt at aligning the two challenges described in Section 2
with recent GISMOE publications.

3.1 Feature-level functional sensitivity
analysis

GISMOE advocates the use of sensitivity analysis to de-
termine the places in code artifacts that should be evolved
and which should remain untouched according to the prop-
erty analyzed. We argue that to address the SPL challenges
with GISMOE, a key premise is to be able to perform a
sensitivity analysis at the feature level because features are
the building blocks of the products of a SPL. This entails
establishing traceability links between features and feature
interactions and the artifacts that realize them. These links
would enable targeting the evolution to concrete parts of the
artifacts to achieve the desired functionality goals.

We now describe this form of sensitivity analysis based on
our traceability work [27], which is part of our Extraction
and Composition for Clone-and-Own (ECCO) approach [12,
13,25]. ECCO works under two simple premises. First, that
each product provides its artifact base (e.g. Java source
code) and a list of features that it implements (e.g. feature
LINE for product P1, and features LINE and WIPE for product
P2). Second, that features with the same name implement
the same functionality in similar ways. For instance, in our
running example, feature LINE has the same functionality in
both products P1 and P2. In addition, for sake of illustration,
LINE is shown in Figure 3 implemented with exactly the
same code in products P1 and P2; however, we will discuss
later the implications of this assumption.

Let us now define the two kinds of modules in the software
products that ECCO considers [12,27]:

Definition 1. Base Module. A base module imple-
ments a feature regardless of the presence or absence of any
other features and is denoted with the feature’s name written
in lowercase.

Definition 2. Derivative Module. A derivative mod-
ule m = δn(c0, c1, ..., cn) implements feature interactions,
where ci is F (if feature F is selected) or ¬F (if not selected),
and n is the order of the derivative.

ECCO’s extraction algorithm automatically produces a
set of traces between both types of modules and the arti-
facts (e.g. source code fragments) that implement them [27].
These code fragments can be of any granularity level, from
entire classes down to individual statements. In essence, this
algorithm works by incrementally refining the traces based
on integrating the knowledge that can be derived from each
product. Let us illustrate the gist of this idea with the
code of Figure 3. As a first step, if we initially consider
only product P1, all its code would trace to module line.
With the knowledge added by product P2, the algorithm
can infer now, based on the different features provided by
the two products, that all the code in Lines 21-29, Lines 30-
37, and Line 42 traces to module line. This is so because
both products, on one hand, provide the same feature LINE
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and, on the other, implement this feature in a similar way.
In addition, the algorithm now traces Lines 38-41 to mod-
ule wipe and derivative module δ1(line, wipe). Note that
if we were to add another product with feature WIPE but
without feature LINE, the algorithm could further refine the
traces to indicate that the feature interaction denoted by
derivative δ1(line, wipe) is actually realized by the state-
ment in Line 39. This short description omitted many rel-
evant details such as dealing with hierarchy and ordering
issues among the artifacts. For further information, please
refer to [12,13,27].

The relevance for GISMOE of the traceability provided
by ECCO is that this new form of sensitivity analysis pro-
vides the means by which to focus the places where to target
the evolution of the artifacts, for instance to graft new func-
tionality (i.e. grow and insert a new feature), repair a bug
(i.e. the faulty feature interaction in Figure 4), or improve
a non-functional property of a feature.

Nonetheless, there remain several challenges that still need
to be addressed to fully support this form of sensitivity anal-
ysis. Currently, the similarity among artifacts is computed
purely on the structural comparison of their elements. We
envision that clone detection technologies will play an im-
portant role addressing this need (e.g. [6, 42,43]).

3.2 Automated test case generation
In GISMOE, the test cases are used to evaluate the fitness

of the artifacts that result from evolution. There is an exten-
sive body of work on SPL testing [8,9,11]. Among the most
popular approaches for SPL testing is Combinatorial Inter-
action Testing (CIT), a fact that has been corroborated by
our recent mapping study [32]. However, to the best of our
knowledge, the automated test generation for the scenarios
described in Section 2 remains an open question.

ECCO was conceived from the outset to be able to sup-
port any type of artifact provided that it can be differenti-
ated, i.e. that a mechanism is available for identifying the
common and different parts of the artifacts based on given
criteria (e.g. artifact structure). From this perspective, test
artifacts (e.g. models or code) are simply another type of
artifact for which their traceability to features and feature
interactions, as described in Section 3.1, can be obtained.
Consequently, we envisage that the new test cases can them-
selves be derived and genetically improved in the same way
as other artifacts can, i.e. by focusing on the precise artifact
fragments identified by ECCO’s traceability algorithm. In
addition, we speculate that work on computing CIT cover-
ing arrays applied to SPLs (e.g. [31,32]) that instead focuses
on the coverage of base and derivative modules could serve
to reduce the testing effort, in a similar way to the notion
of output bins that has been employed by GISMOE [24].

3.3 Feature-level non-functional sensitivity
analysis

Research on non-functional properties in SPLs has at-
tracted recent interest. For instance, Noorian et al. pro-
pose a taxonomy to classify the different approaches [38]. A
first line of research is the work by Siegmund et al. who esti-
mate memory footprint and main-memory consumption [45].
They propose an analytical model that computes, from a
CIT perspective, covering arrays of different strengths (i.e.
t=1, t=2, and ad hoc) which they use to perform actual mea-
surements of a single non-functional property. Based on the

measurements, their model estimates the impact that fea-
tures and feature interactions can have on the non-functional
property.

A second line of research works by adding additional at-
tributes to the features of the feature model that models the
variability of a SPL. Based on these values, multi-objective
evolutionary algorithms are used to obtain configurations
(i.e. products with valid combinations of features) that meet
the property requirements. For instance, the work of Sayyad
et al. focuses on information related to cost and defects [44].
Our previous work considered also multi-objective evolution-
ary algorithms but instead applied to relevant properties
(i.e. usability, battery consumption, and memory footprint)
for the dynamic configuration of SPLs deployed in mobile
phone environments [39]. In both cases, the evaluation was
performed basically with synthetic values.

We argue that the solution to achieving the goal of non-
functional sensitivity analysis advocated by GISMOE when
applied in the context of SPLs lies somewhere at the in-
tersection of these two lines of research. On one hand it
is important that the optimization is based on actual mea-
sured values at the right level of granularity (i.e. not at
the coarse grain level of attributes of single features) and
that the optimization considers multiple objectives, hence
multiple non-functional properties, simultaneously.

3.4 The need of co-evolution
The GISMOE approach relies on co-evolution of the pro-

grams and their corresponding tests. SPLs make it a more
challenging task because, in a real-life scenario, multiple
types of artifacts must be concurrently considered and hence
co-evolved. In addition, a key requirement is to keep the ar-
tifacts not only for a single product but simultaneously for
all the products of the SPL. Work on consistency checking
across multiple variants (e.g. [29]) could be brought to bear
as a starting point to address this need.

3.5 The human in the loop
GISMOE advocates the involvement of developers of the

systems, in part to employ domain knowledge perhaps only
available in the heads of the domain experts but also to help
reduce the adoption barrier of its automatically generated
systems.

Our ECCO approach also benefits from the involvement of
developers. ECCO provides hints, for instance, to indicate
that the implementation of some new modules cannot be
fully automated [12, 13, 25]. Based on the input received
manually, ECCO updates and refines its traces.

Another source of knowledge could be, for example, em-
ploying ontologies to provide information about the relation-
ships between features in a given domain. For instance, in
our running example, knowing that a LINE and a RECT are
both geometrical forms could help to trim the search space
for finding a repair to the faulty product P4. More con-
cretely, to use the code of product P3 as source to obtain
code fragments (i.e. field rects) from which to evolve or
graft the repair.

One of the most salient challenges here is how to convey
the large amount of information to the human, such that
the interactions are both simple and efficient. Research and
tooling available for software visualization is definitively the
starting point [47]. Except for few examples, such as [30,36],
SPL visualization remains an area largely unexplored.
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4. THE ROAD AHEAD
In this section we broadly describe some of the first explo-

ration steps we plan to undertake in the short-term future.

• Exploit clone detection. We plan to extend our trace-
ability algorithm to detect similar and different code
beyond the current level that focuses on identical names
and structure [6, 42,43].

• Grafting variability annotations into UML models. We
plan to explore selecting artifacts from a product and
through GI graft annotations that capture the variabil-
ity present, for the selected artifacts, in all the prod-
ucts of a SPL. We intend to use information retrieval
metrics as done in our previous work [35], and perform
a comparison with ECCO’s traceability extraction al-
gorithm.

• Adapting GenProg ideas into the ECCO approach. We
want to explore how the automated repair work pro-
posed by GenProg [16] can be adapted to the context
of SPLs, in particular to solve repair scenarios such
as the one illustrated in Section 2. Doing so would re-
quire to frame and assess the plastic surgery hypothesis
(see [4]) within the realm of SPLs, and integrate the
ECCO tool with ASTOR [37], the Java based imple-
mentation of GenProg principles.

We hope that the overview we provided can help to draw
the attention to the great synergies existing between GI and
SPLs, and entice the readers to pursue and tackle the chal-
lenges identified.
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H. Prähofer, R. E. Lopez-Herrejon, and A. Egyed.
Recovering feature-to-code mappings in
mixed-variability software systems. In 30th IEEE
International Conference on Software Maintenance
and Evolution, Victoria, BC, Canada, September 29 -
October 3, 2014, pages 426–430, 2014.

[26] L. Linsbauer, S. Fischer, R. E. Lopez-Herrejon, and
A. Egyed. An incremental and product centric
approach to product line evolution. In Submitted for
publication, 2015.

[27] L. Linsbauer, R. E. Lopez-Herrejon, and A. Egyed.
Recovering traceability between features and code in
product variants. In SPLC, pages 131–140, 2013.

[28] L. Linsbauer, R. E. Lopez-Herrejon, and A. Egyed.
Feature model synthesis with genetic programming. In
C. L. Goues and S. Yoo, editors, Search-Based
Software Engineering - 6th International Symposium,
SSBSE 2014, Fortaleza, Brazil, August 26-29, 2014.
Proceedings, volume 8636 of Lecture Notes in
Computer Science, pages 153–167. Springer, 2014.

[29] R. E. Lopez-Herrejon and A. Egyed. Detecting
inconsistencies in multi-view models with variability.
In T. Kühne, B. Selic, M.-P. Gervais, and F. Terrier,
editors, ECMFA, volume 6138 of Lecture Notes in
Computer Science, pages 217–232. Springer, 2010.

[30] R. E. Lopez-Herrejon and A. Egyed. Towards
interactive visualization support for pairwise testing
software product lines. In A. Telea, A. Kerren, and
A. Marcus, editors, VISSOFT, pages 1–4. IEEE, 2013.

[31] R. E. Lopez-Herrejon, J. Ferrer, F. Chicano,
A. Egyed, and E. Alba. Computational Intelligence
and Quantitative Software Engineering, chapter
Evolutionary Computation for Software Product Line
Testing: An Overview and Open Challenges. Springer,
2015. Accepted for publication.

[32] R. E. Lopez-Herrejon, S. Fischer, R. Ramler, and
A. Egyed. A first systematic mapping study on
combinatorial interaction testing for software product
lines. In 4th International Workshop on Combinatorial
Testing (IWCT 2015), 2015. to appear.

[33] R. E. Lopez-Herrejon, J. A. Galindo, D. Benavides,
S. Segura, and A. Egyed. Reverse engineering feature
models with evolutionary algorithms: An exploratory
study. In G. Fraser and J. T. de Souza, editors,
SSBSE, volume 7515 of Lecture Notes in Computer
Science, pages 168–182. Springer, 2012.

[34] R. E. Lopez-Herrejon, L. Linsbauer, and A. Egyed. A
systematic mapping study of search-based software
engineering for software product lines. Information &
Software Technology, 61:33–51, 2015.

[35] R. E. Lopez-Herrejon, L. Linsbauer, J. A. Galindo,
J. A. Parejo, D. Benavides, S. Segura, and A. Egyed.
An assessment of search-based techniques for reverse
engineering feature models. Journal of Systems and
Software, 103:353–369, 2015.

[36] J. Martinez, T. Ziadi, R. Mazo, T. F. Bissyandé,
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